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Universitat de Barcelona, E–08028 Barcelona, Spain.
6Department of Physics, University of Washington, Seattle, WA 98195-1560.

(Dated: May 4, 2009 - 14:46)

Abstract
We present the results of an exploratory Lattice QCD calculation of three-baryon systems through
a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion
mass of mπ ∼ 390 MeV. Because of the computational cost of the necessary contractions, we
focus on correlation functions generated by interpolating-operators with the quantum numbers of
the Ξ0Ξ0n system, one of the least demanding three baryon systems in terms of the number of
contractions. We find that the ground state of this system has an energy of EΞ0Ξ0n = 3877.9±6.9±
9.2± 3.3 MeV corresponding to an energy-shift due to interactions of δEΞ0Ξ0n = EΞ0Ξ0n− 2MΞ0 −
Mn = 4.6± 5.0± 7.9± 4.2 MeV. There are a significant number of time-slices in the three-baryon
correlation function for which the signal-to-noise ratio is only slowly degrading with time. This
is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger
times, and is due to the suppressed overlap of the source and sink interpolating-operators that are
associated with the variance of the three-baryon correlation function onto the lightest eigenstates
in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is
the calculation of the structure and reactions of light nuclei, we also present initial results for a
system with the quantum numbers of the triton (pnn). This present work establishes a path to
multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions
of systems containing four and five baryons are now within sight.
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I. INTRODUCTION

One of the ultimate goals of Lattice Quantum Chromodynamics (LQCD) is to calculate the
properties and interactions of light-nuclei to high precision from first principles. While it is
important to be able to explicitly demonstrate that nuclei emerge from QCD, the underlying
motivation for this effort is to provide proof that LQCD provides a reliable theoretical tool
with which to calculate highly complex low-energy strong interaction processes. With such
a tool in hand, calculations of strong interaction systems for which experimental guidance
is minimal, or absent, can be performed with confidence and with uncertainties that can be
rigorously quantified. The interaction between three neutrons, which is an important input
into many-body calculations of nuclei, provides an example of a quantity that is difficult to
access experimentally, but which will be calculable to high precision with LQCD within the
next decade.

The theoretical framework with which to determine the hadron-hadron scattering phase-
shifts below the inelastic threshold from the volume dependence of the two-hadron en-
ergy levels in the lattice-volume was established a number of years ago by Lüscher [1, 2].
This framework was used to extract nucleon-nucleon scattering lengths in quenched QCD
(QQCD) [3] at unphysically large pion masses. Subsequent fully-dynamical LQCD calcula-
tions also used the Lüscher-method to extract nucleon-nucleon [4], and hyperon-nucleon [5]
scattering lengths and phase-shifts 1 (from a single correlation function), albeit at unphys-
ically large pion masses. The exponentially degrading signal-to-noise ratio encountered in
the region of the correlation functions dominated by the ground-state, expected from the
arguments presented by Lepage [13], severely limited the precision with which the scatter-
ing phase-shifts could be extracted from all of these calculations. The resources required
to perform these calculations and the anticipated scaling of the statistical uncertainties in
such calculations as a function of the pion mass [13] are sufficient to estimate the resources
required to perform calculations of baryon-baryon (BB) scattering at the physical value of
the pion mass to a given level of precision [10]. Given the smallness of nuclear physics
energy-scales, typically a few MeV, compared to the chiral-symmetry breaking scale, Λχ,
or the pion mass, mπ, it is guaranteed that a very large number of measurements will be
required to achieve the necessary precision. At the physical pion mass, Ref. [10] estimates
that ∼ 3 × 106 measurements will be required to determine the NN scattering length with
a ∼ 50% uncertainty. Such estimates will be further refined as additional calculations at
different pion masses, lattice-volumes and lattice-spacing are performed.

Recently, we have performed a high-statistics calculation of a number of single-hadron
correlation functions [14] on an ensemble of the anisotropic gauge-field configurations gen-
erated by the Hadron Spectrum Collaboration [15, 16] with a pion mass of mπ ∼ 390 MeV,
a spatial lattice spacing of bs ∼ 0.1227, an anisotropy ξ = bs/bt = 3.5 and a lattice volume
of 203 × 128. The goal of the study was to “jump” an order of magnitude in the number
of measurements performed to estimate correlation functions, and to explore the “new ter-
ritory” that subsequently emerged. The baryon masses were extracted with precision at
the <∼ 0.2%-level from the 292, 500 measurements performed on 1194 of these gauge-field

1 Calculations of these same processes were subsequently performed in quenched QCD [6, 7] and in QCD
[8, 9]. In these same works it was suggested that a baryon-baryon potential could be defined from
LQCD calculations. However, flawed reasoning led to such a conclusion, in particular, the omission of the
spatially-dependent two-body overlap factor which is present in the correlation functions [10–12].
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configurations. A number of important and surprising observations were made in that work
that have modified the path from LQCD to nuclei that we envisage. One of the most im-
portant aspects of that high-statistics work was that a detailed study of the signal-to-noise
ratio in the single-baryon correlation functions became possible. The signal-to-noise ratio
was found to be approximately independent of time for a significant number of time-slices
prior to evolving toward the expected exponential degradation [13, 14]. This window of
“clean” time-slices is understood in terms of the the relative magnitude of the overlap of the
single-baryon interpolating operator onto the single-baryon eigenstates, compared with the
overlap of the corresponding interpolating-operator onto the lightest eigenstates (involving
both meson and baryon-anti-baryon states) that contribute to the correlation function that
governs the variance of the single-baryon correlation function. Given that the signal-to-noise
ratio for a system containing more than one baryon is expected to scale (approximately) as
the product of the signal-to-noise ratio’s of the individual baryons (neglecting their interac-
tions), this window of clean time-slices suggests that it may well be possible to calculate the
energy-levels of systems containing a number of baryons in this lattice volume with these
interpolating-operators.

In this work we present the first LQCD calculations of system comprised of three
baryons. As the number of contractions required to form the correlation functions is naively
Nu! Nd! Ns!, one of the least computationally expensive systems2 to explore is the one that
couples to a source and sink of the form Ξ0Ξ0n. For simplicity, the product of the sin-
gle baryon interpolating operators with the quantum numbers of the Ξ0 and n are used in
the calculations. This source will have non-zero overlap with states with strangeness four
(s = 4), spin one-half (J = 1

2
), and with a third component of isospin of one-half (Iz = 1

2
).

Further, we present preliminary calculations of the pnn-system which will contain the triton
if it is bound for this pion mass. We are presently unable to explore even the simplest
system containing four baryons because of the computational resources required to perform
the contractions (which are usually the least expensive component of a lattice calculation!),
but see no reason why systems containing four and five baryons could not be explored in
the near future.

II. LATTICE QCD CALCULATIONS

In this study, we employ a single ensemble of the nf = 2+1-flavor anisotropic clover gauge-
field configurations that have been produced by the Hadron Spectrum Collaboration [15, 16].
The technical details of the propagators computed on this ensemble are presented in Ref. [14]
and we do not repeat them here. In the current calculation, the analysis is restricted
to a slightly smaller data set, corresponding to an average on 218 randomly distributed
measurements on each of 1191 configurations (a total of ∼260,000 measurements).

Each of the propagators calculated on the gauge-field configurations is used to determine
two-point correlation functions, which for a single baryon have the form

CH;Γ(p; t) =
∑
x

eip·x Γα
β 〈 Hβ(x, t)Hα(x0, 0) 〉 , (1)

2 The ΛΛΣ0 system requires fewer contractions, however the additional strange quark in the Ξ0Ξ0n system
is expected to result in a cleaner signal.
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where Hα(x, t) is an interpolating operator for the appropriate baryon state, e.g., for the
proton Hα(x, t) = εabc

(
ua,T C γ5d

b
)
uc,α(x, t) where C is the charge conjugation matrix.

The Dirac matrix Γ is an arbitrary particle-spin-projector and the point x0 is the propaga-
tor source point. The interpolating-operator at the source, H, is constructed from gauge-
invariantly-smeared quark field operators, while at the sink, the interpolating operator is
constructed from either local quark field operators, or from the same smeared quark field
operators used at the source, leading to two sets of correlation functions. For brevity, we
refer to the two sets of correlation functions that result from these source and sink operators
as smeared-point (SP) and smeared-smeared (SS) correlation functions, respectively. The
correlation functions for the three-baryon systems have the form 3,

CH1H2H3;Γ̃(p1,p2,p3; t) =
∑

x1,x2,x3

eip1·x1 eip2·x2 eip3·x3 Γ̃α1α2α3
β1β2β3

〈 Hβ1

1 (x1, t)Hβ2

2 (x2, t)Hβ3

3 (x3, t)H1,α1(x0, 0)H2,α2(x0, 0)H3,α3(x0, 0) 〉 , (2)

where Γ̃ is the tensor that projects onto the required angular momentum state. The same
quark-propagators have been used in each baryon, and thus the source for each baryon is
located at the same spatial point. More physically motivated sources and sinks involving
spatial separations would likely improve the overlap onto the ground state in these systems,
however this approach would be more computationally demanding and is not used in this
exploratory work.

In the present work, we have restricted ourselves to the calculation of correlation
functions for which each baryon is projected to zero-momentum at the sink, defining
CH1H2H3;Γ̃(t) = CH1H2H3;Γ̃(0,0,0; t). Further, the optimal analysis of the three-baryon sys-
tems (with propagators from a single source) would have involved calculating the correlation
functions associated with the different sink-smearing, SP and SS, for each baryon. Due to
lack of computational resources we have restricted ourselves to the (SS)3 and the (SP)3 cor-
relation functions, and have not calculated the “mixed” correlation functions, such as the
(SS)2(SP) correlation function.

With two correlation functions associated with each set of quantum numbers in both the
one- and three-baryon sectors, a linear combination of the pair of correlation functions can
be constructed to produce a combined correlation function that more cleanly projects onto
the lowest energy state in the lattice volume. One way to accomplish this is by hand, where
one simply “looks” for the linear combination of correlation functions that has an effective
mass plot (EMP) with the ground-state extending to the shortest time-slice. A refinement
of this “brute-force” method is to use the matrix-Prony method presented in our previous
paper [14], which we now review.

The two correlation functions, SS and SP, are sums of exponentials and satisfy the fol-
lowing matrix relation,

My(τ + tJ)− V y(τ) = 0 , (3)

where M and V are 2 × 2 matrices and y(t) is a column vector with two components
corresponding to the two correlation functions. Eq. (3) implies then the correlation functions

3 A more complete calculation would generate correlation functions between sources and sinks that carry
the same global quantum numbers, such as Ξ0Ξ0n → Ξ0Σ+Σ−, in order to identify all of the states in the
lattice volume. For computational expediency we study only one combination of source and sink.
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are

y(t) =
2∑

n=1

Anqnλ
−t
n , (4)

where qn and λn = exp(mn) are the eigenvectors and eigenvalues of the following generalized
eigenvalue problem

Mq = λtJ V q . (5)

Given the two sets of correlation functions, the masses can be found by determining the
matrices M and V that are needed in order for the signal to satisfy Eq. (3). Solving
Eq. (5), leads to the eigenvalues and eigenvectors needed to reconstruct the amplitudes of
each exponential in the correlation functions. It is straightforward to show that a solution
for M and V is

M =

[
t+tW∑
τ=t

y(τ + tJ)y(τ)T

]−1

, V =

[
t+tW∑
τ=t

y(τ)y(τ)T

]−1

. (6)

These inverses exist provided that the range, tW , is large enough so that the matrices in
the brackets are of full rank. Once the eigenvalues, λn and eigenvectors qn are determined,
the amplitudes, An, can be reconstructed using a fixed time-slice as a normalization point.
The parameters tW and tJ can be used to improve stability as investigated in Ref. [14]. The
eigenvectors associated with the ground-state energy eigenvalue provide the linear combi-
nation of SS and SP correlation functions for which the plateau in the EMP sets in at the
earliest time. As the eigenvectors can be determined at early time-slices, the degradation
of the signal at later times seen in the eigenvalues of the matrix-Prony method, largely due
to increasing fluctuations in the SS correlation function, is greatly reduced. This method is
independently applied to the single baryon and the three-baryon pairs of correlation func-
tions, to produce a single correlation function for each. For the present calculations, the
relevant “diagonalized” correlation functions are

CΞ0(t) = η
(SS)

Ξ0 C
(SS)

Ξ0 (t) + η
(SP )

Ξ0 C
(SP )

Ξ0 (t)

Cn(t) = η(SS)
n C(SS)

n (t) + η(SP )
n C(SP )

n (t)

CΞ0Ξ0n(t) = η
(SS)

Ξ0Ξ0n C
(SS)

Ξ0Ξ0n(t) + η
(SP )

Ξ0Ξ0n C
(SP )

Ξ0Ξ0n(t) . (7)

where the coefficients η
(W )
H (W = SS, SP ) are determined numerically. To present the

results, and to extract the energies of the states, it is convenient to work with the effective
mass (EM), M(t; tJ), defined via the ratio

M(t; tJ) =
1

tJ
log

[
CH(t)

CH(t + tJ)

]
, (8)

which is independent of time when the diagonalized correlation function is dominated by
a single exponential. The effective mass plot (EMP) associated with the diagonalized
nucleon correlation function is shown in fig. 1, and that associated with the diagonalized Ξ0

correlation function is shown in fig. 2. Extended and clean plateaus are observed for both
the nucleon and the Ξ0, as discussed in detail in Ref. [14].

The source and sink used to produce the Ξ0Ξ0n state is the product of interpolating
operators that have good overlap onto the lowest-lying octet baryons, Ξ0 and n. However,
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FIG. 1: The EMP’s associated with the diagonalized nucleon correlation function, with tJ = 5.
The left panel, which also shows the fit to the plateau region, is a magnification of the right panel.
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FIG. 2: The EMP’s associated with the diagonalized Ξ0 correlation function, with tJ = 5. The
left panel, which also shows the fit to the plateau region, is a magnification of the right panel.

since the three-baryon eigenstates of the QCD Hamiltonian in the lattice volume, or in
nature, are not simple products of single baryon eigenstates, this source and sink will couple
(at some level) to all states with the corresponding quantum numbers. This will be the case,
no matter how well the single hadron interpolating operators project to their respective
ground states. We expect our correlation functions to have significant contributions from
nearby states, such as Ξ0Ξ0n, Ξ0Ξ−p, Ξ0ΛΛ, Ξ0Σ+Σ−, Ξ0Σ0Σ0, Ξ−Σ+Σ0, Ξ−Σ+Λ with
thresholds (neglecting interactions) of 0.6893, 0.6893, 0.6858, 0.7008, 0.7008, 0.7008, 0.6933
in lattice-units, respectively. It is clear that the energy eigenstates in the lattice volume
will be mixtures of the different states and from the above considerations, we expect to
find four relatively close energy-levels. 4 In order to cleanly see these nearby states, multiple
correlation functions formed from different sources and sinks, and more sophisticated analysis
techniques will be required. As the goal of this work is not to provide detailed spectroscopy
of such states, but to demonstrate the feasibility of studying such systems, we do not make
efforts to identify the total isospin of the ground state, and are content with identifying
what appears to be (with the current statistics) a single state. For simplicity, we refer
to this state as Ξ0Ξ0n. The EMP’s associated with the SS, SP and diagonalized Ξ0Ξ0n

4 It is interesting to note that non-strange channels will be simpler to analyze as the low energy spectrum
will be less dense.
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correlation functions are shown in fig. 3, and show a plateau for a three-baryon state with
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FIG. 3: The EMP’s associated with the SS, SP, and diagonalized Ξ0Ξ0n correlation function, with
tJ = 5. The lower right panel, which also shows the fit to the plateau region, is a magnification of
the lower left panel.

energy

EΞ0Ξ0n = 0.6890(13)(17)(6) l.u. = 3877.9± 6.9± 9.2± 3.3 MeV , χ2/d.o.f. = 1.9 .(9)

The uncertainties in this result correspond to a statistical uncertainty, a fitting uncertainty
from the analysis presented above, and an additional fitting uncertainty from comparison to
alternate analysis techniques using either multiple exponential fits or other Prony methods
(see Ref.[14] for details). An additional uncertainty associated with the determination of
lattice scale bs = 0.1227(8) is not included. Fig. 3 also shows a plateau for a backward prop-
agating negative parity state, which is consistent with a four-body state with the quantum
numbers of Ξ0Ξ0nπ (which ultimately will allow for the calculation of pion interactions with
multi-baryon systems).

As the diagonalized correlation functions are dominated by their respective ground-states
even at relatively short times, the energy-splitting between the ground-state of the Ξ0Ξ0n
system, and that of the two Ξ0’s and a neutron can be found efficiently by forming the ratio
of the diagonalized correlation functions, CH(t),

GΞ0Ξ0n(t) =
CΞ0Ξ0n(t)

C
2

Ξ0(t) Cn(t)
→ A0 e−δEΞ0Ξ0nt , (10)

which at large times (for gauge-field configurations that are infinitely long in the time-
direction) tends to an exponential that depends upon the energy-splitting δEΞ0Ξ0n =
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EΞ0Ξ0n − 2MΞ0 − Mn. Fig. 4 shows the effective mass corresponding to GΞ0Ξ0n(t), along
with the correlated fit to the plateau region. The energy-splitting δEΞ0Ξ0n is determined to
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FIG. 4: The EMP’s for the energy-splitting associated with the ratio of SS, SP and diagonalized
correlation functions, GΞ0Ξ0n(t) as defined in eq. (10) with tJ = 3. The lower right panel, which
also shows the fit to the plateau region, is a magnification of the lower left panel.

be

δEΞ0Ξ0n = 4.6± 5.0± 7.9± 4.2 MeV , χ2/d.o.f. = 2.0 , (11)

from fitting the time-interval from t = 21 to t = 35, using tJ = 3, which is consistent
with zero (the splitting is computed relative to the non interacting system of two Ξ0s and a
neutron for convenience). It is very encouraging that the uncertainty in the energy-shift per
baryon is ∼ 3 MeV, which is smaller than the binding-energy per nucleon in typical nuclei,
B ∼ 8 MeV, and not significantly larger than the binding-energy per nucleon in the deuteron
or triton at the physical values of the light-quark masses. The single energy-level fit to the
EMP in fig. 4 has a χ2/d.o.f. = 2.0, indicating that there maybe additional structure in
the correlation function. Including a second energy-level shifted by ∆E ∼ −0.004 lattice
units might provide a better description of the EMP, and this would be consistent with the
lower-energy state, Ξ0ΛΛ, that is expected to contribute to the four low-lying eigenstates in
the lattice-volume. However, enhanced statistics are required to determine if this is, in fact,
the case.

At present, unlike the situation in multi-meson systems [17–19], the analytical tools are
not in place to use the above energy shift and those of the associated two baryon systems
to extract the parameters describing the relevant two- and three-body interactions. While
the volume dependence of the simplest three-fermion systems has been studied in Ref. [20],
the mixing we expect between four closely spaced states complicates the situation.
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III. SIGNAL-TO-NOISE RATIOS

The Ξ0Ξ0n calculation is possible with our present resources because there are time-slices
in the correlation functions for which the signal-to-noise ratio is approximately independent
of time. This is a region of time-slices for which the correlation function that dictates the
variance of the signal is not yet dominated by its “ground-state”, which for the single-nucleon
correlation function is three pions. Given the importance of this observation in Ref. [14], it
is worth re-stating and expanding upon it here.

As argued by Lepage [13], correlation functions involving one or more baryons exhibit
statistical noise that increases exponentially with Euclidean time. In the case of a single
positive parity nucleon, the correlation function has the form

〈θN(t)〉 =
∑
x

Γβα
+ 〈Nα(x, t)N

β
(0, 0)〉 → ZN e−MN t , (12)

where Nα(x, t) is an interpolating field that has non-vanishing overlap with the nucleon,
Γ+ is a positive energy projector, and the angle brackets indicate statistical averaging over
measurements on an ensemble of configurations. The variance of this correlation function is
given by

N σ2 ∼ 〈θ†N(t)θN(t)〉 − 〈θN(t)〉2

=
∑
x,y

Γβα
+ Γγδ

+ 〈Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0)〉 − 〈θN(t)〉2

→ ZNNe−2MN t − Z2
Ne−2MN t + Z3π e−3mπt + ... → Z3π e−3mπt , (13)

where all interaction energies have been neglected, and N is the number of (independent)
measurements (distinct from the nucleon field operator N). Therefore, at large times, the
noise-to-signal ratio behaves as

σ

x
=

σ(t)

〈θ(t)〉
∼ 1√

N
e(MN− 3

2
mπ)t . (14)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2
mπ)t (15)

at large times. The degradation of the signal-to-noise ratio on gauge-field configurations of
finite temporal extent is exponentially more rapid than that given in Eq. (15) due to the
presence of thermal states, as discussed in Ref. [14].

From the signals and variances that we have measured in the one-, two- and three-baryon
sectors, it is clear that there is a suppression of the overlap onto the three-meson state from
the NN source and sink (the variance correlation function of Eq. (13)), as encapsulated in
the factor Z3π. If Z3π � ZNN , Z2

N there will be a number of time-slices, near the source of
the correlation function, for which the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
, (16)

and does not depend exponentially upon time, or the differences of hadron masses. The
correlation functions we have constructed lead to an implicit suppression of Z3π compared to
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ZNN and Z2
N , due to the fact that the overlap onto the three-meson state, or any meson state,

is strongly suppressed when the sinks Nα(x, t) and N
β
(y, t) do not overlap within a volume

approximately defined by the pion Compton wavelength. Therefore, summing independently

over the volumes for Nα(x, t) and N
β
(y, t) leads to a suppression factor that scales with

the spatial lattice volume 5 as Z3π/ZNN ∼ 1/Λ3L3. The pion mass dictates the weakest
suppression, and hence we set Λ = mπ for the estimates that follow (if the width, w, of the
smearing of the source and sink is larger than the pion Compton wavelength, then Λ ∼ 1/w).
Results consistent with this volume scaling have been found explicitly in calculations of single
baryon energies using domain-wall fermions on MILC gauge configurations.

By generalizing this argument to systems composed of A nucleons6 where each interpo-
lating field is projected to zero momentum, the noise correlation function is expected to
behave parametrically as

N σ2 ∼ (A!)2

(mπL)3A
ZA e−3A mπt +

((A− 1)!)2

(mπL)3(A−1)
ZA−1 e−(2MN+3(A−1)mπ)t + . . .

+
A2

(mπL)3
Z1 e−(2(A−1)MN+3mπ)t + Z0 e−2A MN t + . . . , (17)

where we have made explicit the parametric dependence of the overlap factors on the baryon
number and spatial volume. The dependence on A arises from the number of ways that N
and N sink operators can overlap to form one or more three-pion contributions to the
correlation function. Provided that the spatial volume is large compared to the Compton
wavelength of the pion, mπL � 1, there will be a range of time-slices in which only the last
two terms in Eq. (17) are important. In this region, the signal-to-noise ratio in the multi-
baryon correlation function does not degrade exponentially faster that the signal-to-noise
ratio in the single baryon correlation function. Instead,

σ

x
∼ 1√

N

(
Z + Z ′ A2

m3
πL3

e(MN− 3
2
mπ)t + ...

)
, (18)

where Z and Z ′ are O(1) ratios of overlap factors. Consequently, the signal-to-noise ratio
starts degrading exponentially only after time-slice tnoise, which has parametric dependence

tnoise ∼
2

2MN − 3mπ

ln

[
m3

πL3

A2

]
. (19)

It is important to note that tnoise depends only logarithmically on the number of baryons, and
hence it is conceivable that plateaus may be found in the EMP’s of systems containing four
or more baryons with the current number of measurements if the contractions are performed.

In order to investigate the signal-to-noise ratio in the correlation functions of interest, it
is useful to form the effective noise-to-signal plot [14], in analogy with the EMPs. On each
time slice, the quantity

S(t) =
σ(t)

x(t)
, (20)

5 This has been noted independently by D. B. Kaplan [21].
6 This simple argument holds for A ≤ 4 nucleons and generalizes simply to A ≤ 16 octet baryons. Further

generalizations of this argument accounting for Fermi statistics are straightforward.
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FIG. 5: The energy-scales associated with the signal-to-noise ratios for the nucleon (left panel)
and Ξ (right panel), as defined in eq. (21). The horizontal lines in the left panel correspond to
the energy scales mp − 3

2mπ, mp − 1
2mπ, mp, mp + 1

2mπ, and mp + 3
2mπ (from lowest energy to

highest energy). The horizontal lines in the right panel correspond to the energy scales mΞ− 3
2mη,

mΞ −mK − 1
2mη, mΞ −mη − 1

2mπ, mΞ − 1
2mη, mΞ −mK + 1

2mη, mΞ − 1
2mπ, mΞ, mΞ + 1

2mπ, and
mΞ + mη − 1

2mπ (from lowest energy to highest energy).

is formed, from which the energy governing the exponential behavior can be extracted via

ES(t; tJ) =
1

tJ
log

(
S(t + tJ)

S(t)

)
. (21)

If the correlation function is dominated by a single state, and a single energy-scale determines
the behavior of the noise-to-signal ratio, the quantity ES(t; tJ) will be independent of both
t and tJ .

In fig. 5, the energy scales of the noise-to-signal ratio are shown for the nucleon and Ξ0.
As discussed previously in Ref. [14], it is clear that for t & 45 this scale is significantly greater
than the asymptotic estimate of Lepage (the lowest horizontal line in each figure) because
of thermal states involving propagation around the temporal extent of the lattice. It is also
clear that even the simple Lepage scaling does not set in for many time-slices corresponding
to a large window in which the signal is statistically clean. Figure 5 indicates that the
suppression of mesonic intermediate states is stronger for the Ξ correlation function than
for the nucleon correlation function, as evidenced by the energy-scale of the signal-to-noise
ratio remaining small for longer times.

The energy-scale associated with the noise-to-signal ratio of the diagonalized Ξ0Ξ0n cor-
relation function is shown in the left panel of fig. 6. While degrading exponentially, the
signal-to-noise ratio of the three-body correlation function, is exponentially better in the

11
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FIG. 6: The left panel shows the energy-scales associated with the signal-to-noise ratios for the
Ξ0Ξ0n correlation function, as defined in eq. (21). The horizontal line corresponds to mN +2mΞ−
2mη− 5

2mπ, the asymptotic energy-scale in a lattice with infinite temporal extent. The right panel
shows the difference between the signal-to-noise energy scales of the diagonalized Ξ0Ξ0n correlation
function and that of the nucleon and twice that of the Ξ correlation function.

plateau region t<∼ 32, than expected based upon the arguments of Lepage, consistent with
the expectations based upon the behavior of the signal-to-noise ratio of the nucleon and Ξ.
The right panel of fig. 6 shows that the energy-scale associated with the signal-to-noise ratio
in the Ξ0Ξ0n correlation function is consistent with the simple sum of the energy-scales from
the single baryon correlation functions (within statistical uncertainties of the calculation).

In creating sources and sinks for correlation functions, a great deal of attention is paid to
optimizing the overlap onto the states of interest. Variational techniques [22, 23], the matrix-
Prony method, and related approaches make use of sources and sinks with substantial, but
different, overlaps onto the states of interest to enable a diagonalization to the eigenstates in
the lattice-volume (up to exponentially suppressed contributions). For multi-baryon systems,
the results of this work make clear that an equally important component of source and
sink optimization is to minimize the overlap onto the lightest states that contribute to the
variance of the correlation function. This will also be true for the extraction of the properties
of excited single particle states.

Figure 7 shows a comparison of the relative uncertainties (statistical and systematic
uncertainties are added in quadrature and normalized by the mean value of the measurement)
in the extraction of the ground state hadron energy for a selection of one-, two- and three-
baryon systems using the measurements for which Ξ0Ξ0n contractions exist. We find that
this quantity is approximately constant, due to there being a sufficiently large window of
time-slices for which the signal-to-noise ratio does not degrade exponentially. The extent
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FIG. 7: The upper panel shows the relative uncertainties in the extraction of one-, two- and three-
baryon ground state energies. The lower panel shows the corresponding EMPs for some of these
systems obtained with the Matrix-Prony method.

of this window is empirically seen to decrease with the number of baryons as shown in the
lower panel of fig 7 where the matrix-Prony effective energies7 of exemplary one-, two- and
three-baryon systems are shown (detailed analysis of the two-baryon sector will appear in
future work [24]). This result is consistent with the scaling anticipated in Eq. (19).

7 These EMPS and the central values of these extractions slightly differ from the extractions presented in
figs. 1, 2, and 3, but are consistent.
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IV. THE TRITON CHANNEL

One of the main motivations for the present work is to show that three-baryon (and beyond)
calculations can be done at unphysical quark masses with present day resources. We have
shown the results for channels that couple to Ξ0Ξ0n sources and sinks as their correlation
functions are some of the least computationally expensive, requiring the calculation of only
288 Wick contractions. A significantly more computationally expensive, but physically more
interesting, channel is that of the triton (pnn) for which there are 2880 Wick contractions.
We do not have the computational resources available to perform the pnn contractions
on all of the 260,000 measurements we have made, and to date have only performed ∼
9, 200 measurements of the smeared-smeared correlation function. The generalized EMP
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FIG. 8: The standard EMP for the smeared-smeared pnn correlation function is shown (circles)
along with the generalized EMP resulting from a 3-exponential Prony analysis [14] of the data
(squares). The horizontal light band corresponds to three-times the nucleon mass.

resulting from a 3-exponential Prony analysis is shown in fig. 8, and given the relatively
large uncertainties, we do not present a value for the ground-state energy. At the physical
pion mass one expects to find a negatively shifted state corresponding to the triton. To
conclude that such a signal corresponded to a bound state would require further studies
showing exponentially suppressed sensitivity to the lattice volume in contrast to continuum
states.

V. CONCLUSIONS

In this work, we have presented the first Lattice QCD calculations of a three-baryon state,
focusing on a system with the quantum numbers of Ξ0Ξ0n. We find a ground state energy
of EΞ0Ξ0n = 3877.9 ± 6.9 ± 9.2 ± 3.3 MeV corresponding to an energy shift from the free
three-baryon system of δEΞ0Ξ0n = 4.6± 5.0± 7.9± 4.2 MeV. Our high-statistics analysis of
the behavior of the signal-to-noise ratio of single- and multiple-baryon correlation functions
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indicates that there is a window of time-slices for which the signal-to-noise ratio does not
degrade exponentially. This implies that multi-baryon correlation functions can be calcu-
lated in this time-interval with significantly less computational resources than previously
estimated, and we demonstrate that this is indeed the case in the three-baryon sector. The
signal-to-noise ratio does not depend exponentially upon the number of baryons in this time-
interval, however, the length of this window decreases logarithmically with the number of
baryons.

We have focused only on the state(s) that couples to the Ξ0Ξ0n interpolating-operator
simply due to limited computational resources. In the past it has been the case that gauge-
field generation has required the majority of LQCD resources, but this is no longer true
for precise calculations of baryonic observables. The resources required to perform the
large number of measurements required for nuclear systems is significantly greater than that
required for gauge-field generation. This situation will improve as more effort is put into
algorithmic improvements for contractions, in the same way that the use of deflation [25]
and other techniques have greatly reduced the resources required for propagator generation.
Work in this direction is in progress. Given the observed behavior of the signal-to-noise
ratio, we hope to be able to identify at least the ground state in systems of four and five
baryons.

As the central goal for applications of lattice QCD to nuclear physics is the calculation of
nuclei and their interactions, we have also presented the first calculations of the correlation
function that would contain the triton if the calculations were at the physical pion mass.
The statistics are very limited compared with the Ξ0Ξ0n correlation function, but it is
encouraging to see that there is a clear plateau visible in the effective mass (within somewhat
large uncertainties).

The increase by more than one order of magnitude in the number of measurements
performed on a given ensemble of gauge-field configurations has given rise to a new under-
standing of how to pursue nuclear physics processes with Lattice QCD. Source and sink
optimization involves two considerations (maximal overlap onto the baryon states and min-
imum overlap onto the mesonic states in the correlation function dictating the variance of
the baryon correlation functions) to make optimal use of available resources. It is clear that,
at unphysical values of the quark masses, high statistics calculations can be used to explore
multi-nucleon systems (perhaps beyond A = 5) with present day resources.
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[1] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
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